MARS15 Files of Background Loads on CMS and ATLAS: Tertiary Beam Halo (Collimation Tails)

Nikolai V. Mokhov
November 13, 2008

Results of detailed MARS15 [1] calculations of machine-induced background (MIB) loads on the CMS and ATLAS detectors can now be downloaded from http://www-ap.fnal.gov/users/mokhov/LHC/beam-halo
for the first component of MIB, tertiary beam halo (collimation tails) related to the inefficiency of the main collimation system. This is for protons escaping the betatron cleaning insertion IP7 and being intercepted by the IP1 and IP5 tertiary collimators TCT.

An ideal LHC machine (no alignment and magnet errors) is assumed at 7 TeV with the high-luminosity insertions (IP1 and IP5) squeezed to $\beta^{*}=0.55 \mathrm{~m}$, for a $10-\mathrm{hr}$ beam lifetime and nominal intensity. The collimators were set to the nominal settings, in this case 8.3σ for the tertiary collimators. Other details of the setup, simulation procedure and beam loss rates as well as the main properties of background loads are described in Ref. [2]. The files in this directory are normalized for the Beam-2 approaching IP5 in a counterclockwise direction. They can be directly used for the Beam-1 approaching IP1 in the clockwise direction by multiplying all results by a factor of 1.64 . Corresponding contributions on the other sides of IP1 and IP5 are about 10\% of those obtained with the source term of this directory. Contributions from the momentum cleaning at IP3 are thought to be substantially lower.

Any use of the files of this directory assumes the references to [1] and [2]:
[1] N.V. Mokhov, "The Mars Code System User's Guide", Fermilab-FN-628 (1995); N.V. Mokhov, S.I. Striganov, "MARS15 Overview", in Proc. of Hadronic Shower Simulation Workshop, Fermilab, September 2006, AIP Conf. Proc. 896, p. 50 (2007); Fermilab-Conf-07/008-AD (2007); http://www-ap.fnal.gov/MARS/
[2] N.V. Mokhov, T. Weiler, "Machine-Induced Backgrounds: Their Origin and Loads on ATLAS/CMS", Fermilab-Conf-08-147-APC, May 2008.

Results in this directory are organized in 10 separate files each containing about 180 thousand particles with kinetic energy $E>E_{\text {th }}=20 \mathrm{MeV}$ crossing the machine-detector interface plane at $\mathrm{z}=22.6 \mathrm{~m}$ for the beam approaching the IP (see Fig. 1). Each file is a result of an independent MARS15 run for $3 . e 6$ beam loss events on the TCTs (PRIME=3.e6), totaling in $3 . e 7$ beam loss events and 1830318 particles at the interface plane. One can concatenate these files into the one with PRIME=3.e7 and NSTACK=1830318, or use these files independently for the purpose of runs in CMS and ATLAS with statistical analysis and - possibly - with a reduced statistics. Each of the ten files is about 35 MB in size, or 9.7 MB in a compressed form. To uncompress, use the "gunzip" command.

Each particle carries a statistical weight of W which must be used in the CMS and ATLAS runs. At least one of the ten files needs to be processed to get a correct normalization. Then, to get a correct normalization in units of "per second", the scoring results for weighted particles (W) must be multiplied by the factor of $W 1=8.3 e 9 / P R I M E$. One can always check if the normalization is correct by comparing with the results of [2]. For historical/technical reasons, the right-handed coordinate system used in the MARS15 runs for Beam-2 approaching IP5 is with z-axis pointing from the IP towards the incoming beam, y-axis is pointing from the IP to the outside of the LHC ring, and x-axis is pointing from the $I P$ down to the floor (Fig. 1). Rethink this yourself for 3 other cases. This note is especially important for the strongly asymmetric case of beam-gas scattering to be released soon. Format of the files is described in the following two pages.

Each line in the files contains the following variables:

```
NI, JJ, E,W,X,Y,DCX, DCY, TOFF,PRIMEHITZ,
                ZORIG,XORIG,YORIG,EORIG,WORIG,IORIG,KORIG
```

where

```
NI = event number (irrelevant for detector simulations
        because correlations are destroyed by the weighting
        anyway) .
    JJ = particle ID, as follows:
        Mars Lund Fluka Particle
            ID type type
            1 2212 1 p
            2 2112 8 n
            3 211 13 pi+
            -211 14 pi-
            321 15 K+
            -321 16 K-
            mu+
            mu-
            g
            e-
            e+
            ap
            pi0
            M
            He3
                                    He4
                                    num
                                    nam
                                    nue
                                    nae
                                    KOL
                                    KOS
                            K0
                            AK0
                            LAM
                            ALA
                            SI+
                            SIO
                    SI-
                    nba
                    KSO
                    KS-
                            OM-
                            sb-
                            sb0
                            sb+
                            Ak0
                                Ak+
                            OM+
X, Y = transverse position of the particle
            at the interface plane
DCX, DCY = direction cosines of the particle
            at the interface plane
```

```
TOFF = TOF between the primary proton loss and
    the interface plane at 22.6 m.
PRIMEHITZ = z-coordinate of the primary proton loss
        (for halo produced by scraping at the TCT,
        should be about 148m in all cases,
        i.e. z_TCT).
ZORIG, ..., KORIG tag the origin of hadrons, muons,
        heavy ions and electromagnetic showers (EMS),
        as follows.
        This particle (JJ is not 9, 10 or 11)
        or the EMS (JJ = 9, 10 or 11) originated
        from a particle with particle type IORIG=ID
        (see table of particle types above)
        of energy EORIG and weight WORIG in
        the process KORIG at the point
        (XORIG,YORIG,ZORIG).
KORIG = 0 - primary beam
    1 - muons, unstable particle decay
    2 - muons, prompt at hA-vertex
    3 - muons, Bethe-Heitler pair
    4 - muons, e+e- annihilation
    5 - hadrons, hA-vertex
    6 - hadrons, elastic
    7 - hadrons, from muons
    - hadrons, unstable particle decay
    9 - hadrons, EMS
    10 - hadrons, recoil LEN
    11 - hadrons, from neutrinos
    12 - EMS, induced by photons from pi0-decay
    13 - EMS, induced by synchrotron photons
    14 - EMS, induced by g,e+,e-, at hA vertex
    15 - EMS, induced by knock-on electrons
        from muons or hadrons
    16 - EMS, induced by g,e+,e-
                from unstable particle decay
    17 - EMS, induced by prompt e+e-
        from muons or hadrons
    18 - EMS, induced by brems photons from muon
    19 - EMS, induced by photons from stopped muons
    20 - EMS, induced by photons from low-energy neutrons
    21 - muons, vector mesons
```

Fig. 1:

